Abstract
We describe a theoretical network analysis that can distinguish statistically causal interactions in population neural activity leading to a specific output. We introduce the concept of a causal core to refer to the set of neuronal interactions that are causally significant for the output, as assessed by Granger causality. Because our approach requires extensive knowledge of neuronal connectivity and dynamics, an illustrative example is provided by analysis of Darwin X, a brain-based device that allows precise recording of the activity of neuronal units during behavior. In Darwin X, a simulated neuronal model of the hippocampus and surrounding cortical areas supports learning of a spatial navigation task in a real environment. Analysis of Darwin X reveals that large repertoires of neuronal interactions contain comparatively small causal cores and that these causal cores become smaller during learning, a finding that may reflect the selection of specific causal pathways from diverse neuronal repertoires.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.