Abstract
PurposeIn populations without contrast enhancement, the imaging features of atypical brain parenchyma inflammations can mimic those of grade II gliomas. The aim of this study was to assess the value of the conventional MR-based radiomics signature in differentiating brain inflammation from grade II glioma. MethodsFifty-seven patients (39 patients with grade II glioma and 18 patients with inflammation) were divided into primary (n = 44) and validation cohorts (n = 13). Radiomics features were extracted from T1-weighted images (T1WI) and T2-weighted images (T2WI). Two-sample t-test and least absolute shrinkage and selection operator (LASSO) regression were adopted to select features and build radiomics signature models for discriminating inflammation from glioma. The predictive performance of the models was evaluated via area under the receiver operating characteristic curve (AUC) and compared with the radiologists’ assessments. ResultsBased on the primary cohort, we developed T1WI, T2WI and combination (T1WI + T2WI) models for differentiating inflammation from glioma with 4, 8, and 5 radiomics features, respectively. Among these models, T2WI and combination models achieved better diagnostic efficacy, with AUC of 0.980, 0.988 in primary cohort and that of 0.950, 0.925 in validation cohort, respectively. The AUCs of radiologist 1’s and 2’s assessments were 0.661 and 0.722, respectively. ConclusionThe signature based on radiomics features helps to differentiate inflammation from grade II glioma and improved performance compared with experienced radiologists, which could potentially be useful in clinical practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.