Abstract

Pathogens such as MERS-CoV, influenza A/H5N1 and influenza A/H7N9 are currently generating sporadic clusters of spillover human cases from animal reservoirs. The lack of a clear human epidemic suggests that the basic reproductive number R0 is below or very close to one for all three infections. However, robust cluster-based estimates for low R0 values are still desirable so as to help prioritise scarce resources between different emerging infections and to detect significant changes between clusters and over time. We developed an inferential transmission model capable of distinguishing the signal of human-to-human transmission from the background noise of direct spillover transmission (e.g. from markets or farms). By simulation, we showed that our approach could obtain unbiased estimates of R0, even when the temporal trend in spillover exposure was not fully known, so long as the serial interval of the infection and the timing of a sudden drop in spillover exposure were known (e.g. day of market closure). Applying our method to data from the three largest outbreaks of influenza A/H7N9 outbreak in China in 2013, we found evidence that human-to-human transmission accounted for 13% (95% credible interval 1%–32%) of cases overall. We estimated R0 for the three clusters to be: 0.19 in Shanghai (0.01-0.49), 0.29 in Jiangsu (0.03-0.73); and 0.03 in Zhejiang (0.00-0.22). If a reliable temporal trend for the spillover hazard could be estimated, for example by implementing widespread routine sampling in sentinel markets, it should be possible to estimate sub-critical values of R0 even more accurately. Should a similar strain emerge with R0>1, these methods could give a real-time indication that sustained transmission is occurring with well-characterised uncertainty.

Highlights

  • Novel infections that are transmissible between humans but to which there is no immunity have the potential to cause pandemics, sometimes with high morbidity and mortality1,2,3

  • To disentangle the role of animal-to-human and human-tohuman transmission, we present a model of spillover exposure and onwards human-to-human transmission in which human cases on a given day can arise from exposure to animals or as a result of earlier human cases

  • Applying our methods to data from the recent outbreak of influenza A/H7N9 in China, with spillover resulting from exposure to poultry in live bird markets, we found support for the presence of human-to-human transmission, but no evidence that R0 was near the critical value of one

Read more

Summary

FUNDING STATEMENT

The work was funded by: the Wellcome Trust (Project Grant 093488/Z/10/Z); the Medical Research Council (UK, Project Grant MR/J008761/1; Fellowship MR/K021524/1); the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement no. 278433-PREDEMICS; the Fogarty International Centre (US, R01 TW008246-01) and the RAPIDD program also from Fogarty International Centre with the Science & Technology Directorate, Department of Homeland Security (US).

INTRODUCTION
METHODS
Findings
DISCUSSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.