Abstract

The use of surface plasmons, charge density oscillations of conduction electrons of metallic nanostructures, could drastically alter how sunlight is converted into electricity or fuels by increasing the efficiency of light-harvesting devices through enhanced light-matter interactions. Surface plasmons can decay directly into energetic electron-hole pairs, or “hot” carriers, which can be used for photocurrent generation or photocatalysis. However, little has been understood about the fundamental mechanisms behind plasmonic carrier generation. Here we use metallic nano-wire based hot carrier devices on a wide-bandgap semiconductor substrate to show that plasmonic hot carrier generation is proportional to field intensity enhancement instead of bulk material absorption. We also show that interband carrier generation results in less energetic carriers than plasmon-induced generation, and a plasmon is required to inject electrons over a large energy barrier. Finite Difference Time Domain (FDTD) method is used for theoretical calculations, which match well with experimental results. This work points to a clear route to increasing the efficiency of plasmonic hot carrier devices and drastically simplifies the theoretical framework for understanding the mechanisms of hot carrier generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call