Abstract

The behavioral effects of haloperidol (0.04 to 0.16 mg/kg) and nonparalytic doses of decamethonium (0.2 to 0.8 mg/kg) were studied with operant methods that permitted the measurement of response rate, peak force of response, duration of response, and duration of the rat's head entry into the reinforcement dipper well. Type of operant response topography (forelimb press or forelimb grasp-and-pull) and peak force (low or high) required for reinforcement delivery were independent variables. The low-force, press-topography condition yielded qualitatively different profiles for the two drugs. Haloperidol increased peak force and duration of operant response, increased maximum head entry duration, and temporally dissociated forelimb and head entry behavior. Decamethonium decreased force and duration of operant response, did not appreciably affect maximum head entry duration, and did not influence the normal temporal coupling of forelimb and head entry responses. The haloperidol effects were seen as reflections of pseudo-Parkinsonism, not muscle weakness, which appeared to be the primary source of decamethonium's behavioral effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call