Abstract
The separation of incoherent emission signals from coherent light scattering often poses a challenge in (time-resolved) microscopy or excitation-emission spectroscopy. While in spectro-microscopy with narrowband excitation this is commonly overcome using spectral filtering, it is less straightforward when using broadband Fourier-transform techniques that are now becoming commonplace in, e.g., single molecule or ultrafast nonlinear spectroscopy. Here we show that such a separation is readily achieved using highly stable common-path interferometers for both excitation and detection. The approach is demonstrated for suppression of scattering from flavin adenine dinucleotide (FAD) and weakly emissive cryptochrome 4 (Cry4) protein samples. We expect that the approach will be beneficial, e.g., for fluorescence lifetime or Raman-based imaging and spectroscopy of various samples, including single quantum emitters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.