Abstract
Dysfunctional response inhibition is a key executive function impairment in attention deficit hyperactivity disorder (ADHD). Still, behavioral response inhibition measures do not consistently differentiate affected from unaffected individuals. The authors therefore investigated neural correlates of response inhibition and the familial nature of these neural correlates. Functional MRI measurements of neural activation during the stop-signal task and behavioral measures of response inhibition were obtained in adolescents and young adults with ADHD (N=185), their unaffected siblings (N=111), and healthy comparison subjects (N=124). Stop-signal task reaction times were longer and error rates were higher in participants with ADHD, but not in their unaffected siblings, while reaction time variability was higher in both groups than in comparison subjects. Relative to comparison subjects, participants with ADHD and unaffected siblings had neural hypoactivation in frontal-striatal and frontal-parietal networks, whereby activation in inferior frontal and temporal/parietal nodes in unaffected siblings was intermediate between levels of participants with ADHD and comparison subjects. Furthermore, neural activation in inferior frontal nodes correlated with stop-signal reaction times, and activation in both inferior frontal and temporal/parietal nodes correlated with ADHD severity. Neural activation alterations in ADHD are more robust than behavioral response inhibition deficits and explain variance in response inhibition and ADHD severity. Although only affected participants with ADHD have deficient response inhibition, hypoactivation in inferior frontal and temporal-parietal nodes in unaffected siblings supports the familial nature of the underlying neural process. Activation deficits in these nodes may be useful as endophenotypes that extend beyond the affected individuals in the family.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.