Abstract
We formally define and study the distinguished pre-Nichols algebra \( \tilde{B} \)(V) of a braided vector space of diagonal type V with finite-dimensional Nichols algebra B(V). The algebra \( \tilde{B} \)(V) is presented by fewer relations than B(V), so it is intermediate between the tensor algebra T(V) and B(V). Prominent examples of distinguished pre-Nichols algebras are the positive parts of quantized enveloping (super)algebras and their multiparametric versions. We prove that these algebras give rise to new examples of Noetherian pointed Hopf algebras of finite Gelfand-Kirillov dimension. We investigate the kernel (in the sense of Hopf algebras) of the projection from \( \tilde{B} \)(V) to B(V), generalizing results of De Concini and Procesi on quantum groups at roots of unity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.