Abstract

The impact of enhanced local heating due to absorption of solar radiation by elevated layers of aerosol black carbon (BC) in the lower troposphere in the performance of free-space optical (FSO) communication links is investigated. It is seen that a strong elevated BC layer at an altitude around 4.5km enhances the atmospheric stability locally and leads to a large reduction in the atmospheric refractive index structure parameter (Cn2), leading to improved performance of the FSO communication links. For layers in the tropical atmosphere with sufficiently high BC concentration, the signal attenuation due to BC absorption is alleviated by the large reduction in Cn2 due to BC-induced warming and brings down the link outage probability. Synergy between reduction in Cn2 and long wavelength transmission improves the link budget significantly by reducing the beam wander and number of adaptive optics units required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.