Abstract

To describe gene expression in murine chondrocytes stimulated with IL-6 family cytokines and the impact of deleting Suppressor of Cytokine Signaling-3 (SOCS-3) in this cell type. Primary chondrocytes were isolated from wild type and SOCS-3-deficient (Socs3(Δ/Δcol2)) mice and stimulated with oncostatin M (OSM), IL-6 plus the soluble IL-6 receptor (IL-6/sIL-6R), IL-11 or leukemia inhibitory factor (LIF) for 4h. Total RNA was extracted and gene expression was evaluated by microarray analysis. Validation of the microarray results was performed using Taqman probes on RNA derived from chondrocytes stimulated for 1, 2, 4 or 8h. Gene ontology was characterized using DAVID (database for annotation, visualization and integrated discovery). Multiple genes, including Bcl3, Junb, Tgm1, Angptl4 and Lrg1, were upregulated in chondrocytes stimulated with each gp130 cytokine. The gene transcription profile in response to OSM stimulation was pro-inflammatory and was highly correlated to IL-6/sIL-6R, rather than IL-11 or LIF. In the absence of SOCS-3, OSM and IL-6/sIL-6R stimulation induced an interferon (IFN)-like gene signature, including expression of IL-31ra and S100a9. While each gp130 cytokine induced a transcriptional response in chondrocytes, OSM- and IL-6/sIL-6R were the most potent members of this cytokine family. SOCS-3 plays an important regulatory role in this cell type, as it does in hematopoietic cells. Our results provide new insights into a hierarchy of gp130-induced transcriptional responses in chondrocytes that is normally restrained by SOCS-3 and suggest therapeutic inhibition of OSM may have benefit over and above antagonism of IL-6 during inflammatory arthritis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call