Abstract

BackgroundForest species ranges are confined by environmental limitations such as cold stress. The natural range shifts of pine forests due to climate change and proactive-assisted population migration may each be constrained by the ability of pine species to tolerate low temperatures, especially in northern latitudes or in high altitudes. The aim of this study is to characterize the response of cold-tolerant versus cold-sensitive Pinus halepensis (P. halepensis) seedlings at the physiological and the molecular level under controlled cold conditions to identify distinctive features which allow us to explain the phenotypic difference. With this objective gas-exchange and water potential was determined and the photosynthetic pigments, soluble sugars, glutathione and free amino acids content were measured in seedlings of different provenances under control and cold stress conditions.ResultsGlucose and fructose content can be highlighted as a potential distinctive trait for cold-tolerant P. halepensis seedlings. At the amino acid level, there was a significant increase and accumulation of glutathione, proline, glutamic acid, histidine, arginine and tryptophan along with a significant decrease of glycine.ConclusionOur results established that the main difference between cold-tolerant and cold-sensitive seedlings of P. halepensis is the ability to accumulate the antioxidant glutathione and osmolytes such as glucose and fructose, proline and arginine.

Highlights

  • Forest species ranges are confined by environmental limitations such as cold stress

  • At the molecular level there are several descriptions of genes whose role is important in cold tolerance or acclimation [8] or even genes whose overexpression may increase cold tolerance [12], but there are no descriptions in the literature of metabolomic or molecular changes affecting different provenances of P. halepensis (Aleppo pine), an important conifer species widely used for afforestation or reforestation programs under climates with dry, hot summers, and cold winters

  • There is no description in the literature of the behaviour of the free amino acid pools under cold stress in the genus Pinus, so we investigated the glutathione and the complete free amino acid profiles of P. halepensis under the studied conditions, and the difference among provenances

Read more

Summary

Introduction

Forest species ranges are confined by environmental limitations such as cold stress. The natural range shifts of pine forests due to climate change and proactive-assisted population migration may each be constrained by the ability of pine species to tolerate low temperatures, especially in northern latitudes or in high altitudes. At the molecular level there are several descriptions of genes whose role is important in cold tolerance or acclimation [8] or even genes whose overexpression may increase cold tolerance [12], but there are no descriptions in the literature of metabolomic or molecular changes affecting different provenances of P. halepensis (Aleppo pine), an important conifer species widely used for afforestation or reforestation programs under climates with dry, hot summers, and cold winters This lack of information is limiting our basic knowledge on the species, but the chances of success in afforestation and reforestation programs. One advantage of having this information is that if we identify the physiological or molecular profile of cold-tolerant and cold-sensitive species, we can have a valuable tool to select provenances with more chances to survive under cold environments, as a higher content of a given metabolite may correlate with higher chances of survival

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call