Abstract
Spurred by recent theoretical predictions [Phys. Rev. E 69, 035102(R) (2004)10.1103/PhysRevE.69.035102; Surf. Sci. Lett. 598, L355 (2005)10.1016/j.susc.2005.09.023], we find experimentally using STM line scans that the fluctuations of the step bounding a facet exhibit scaling properties distinct from those of isolated steps or steps on vicinal surfaces. The correlation functions go as t0.15 +/- 0.03 decidedly different from the t0.26 +/- 0.02 behavior for fluctuations of isolated steps. From the exponents, we categorize the universality, confirming the prediction that the nonlinear term of the Kardar-Parisi-Zhang equation, long known to play a central role in nonequilibrium phenomena, can also arise from the curvature or potential-asymmetry contribution to the step free energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.