Abstract

This article presents data on the composition of biotite from igneous rocks of the Shakhtama complex, which are associated with various types of mineralization in Eastern Transbaikalia: Au-Cu-Fe-skarn, skarn-porphyry, Mo-porphyry, rare-metal–greisen, Au-polymetallic and Au-Bi. The major element and halogen contents were determined by EPMA. The content of trace elements was determined by means of LA-ICP-MS. As a result, the specific traits of the composition of the biotite of igneous rocks associated with specific types of mineralization of the Eastern Transbaikalia were determined. The biotites of rare-metal–greisen deposits are characterized by the maximum content of fluorine (>2 wt. %) and low chlorine content (<0.04 wt. %). In addition, such biotites are characterized by high XFe (>0.47). Within Eastern Transbaikalia, igneous rocks developed at the Bystrinsky deposit are potentially ore-bearing for the “classic” porphyry type of mineralization. They have the highest values of IV(F/Cl) (4.9–7.1) and IV(F) (2–2.8) and the lowest values of Log(XMg/XFe) (0.1–0.4). The trace element composition clearly distinguishes biotites from rare-metal–greisen deposits and is identified by the highest contents (ppm) Ga > 65, Li > 600, Sn > 20, Mn > 2000, Cs > 50, Zn > 600. Biotites of Au-polymetallic and Au-Bi deposits occupy an average position between rare-metal–greisen and Mo-porphyry ones. Biotites of Mo-porphyry deposits differ in minimum values (ppm) of Sn < 3, Zn < 160, and low values of Li (150–290), V (290–440), and Ga (39–48). In general, the chemical composition of biotites shows that the degree of igneous rock fractionation of deposits increases in the series: porphyry–skarn–polymetallic–rare-metal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call