Abstract
Decreased levels of the neuroprotective growth factors, low-grade inflammation, and reduced neurocognitive functions during aging are associated with neurodegenerative diseases, such as Alzheimer's disease. Physical exercise modifies these disadvantageous phenomena while a sedentary lifestyle promotes them. The purposes of the present study included investigating whether both aerobic and resistance exercise produce divergent effects on the neuroprotective growth factors, inflammatory cytokines, and neurocognitive performance, and further exploring whether changes in the levels of these molecular biomarkers are associated with alterations in neurocognitive performance. Fifty-five older adults with amnestic MCI (aMCI) were recruited and randomly assigned to an aerobic exercise (AE) group, a resistance exercise (RE) group, or a control group. The assessment included neurocognitive measures [e.g., behavior and event-related potential (ERP)] during a task-switching paradigm, as well as circulating neuroprotective growth factors (e.g., BDNF, IGF-1, VEGF, and FGF-2) and inflammatory cytokine (e.g., TNF-α, IL-1β, IL-6, IL-8, and IL-15) levels at baseline and after either a 16-week aerobic or resistance exercise intervention program or a control period. Aerobic and resistance exercise could effectively partially facilitate neurocognitive performance [e.g., accuracy rates (ARs), reaction times during the heterogeneous condition, global switching cost, and ERP P3 amplitude] when the participants performed the task switching paradigm although the ERP P2 components and P3 latency could not be changed. In terms of the circulating molecular biomarkers, the 16-week exercise interventions did not change some parameters (e.g., leptin, VEGF, FGF-2, IL-1β, IL-6, and IL-8). However, the peripheral serum BDNF level was significantly increased, and the levels of insulin, TNF-α, and IL-15 levels were significantly decreased in the AE group, whereas the RE group showed significantly increased IGF-1 levels and decreased IL-15 levels. The relationships between the changes in neurocognitive performance (AR and P3 amplitudes) and the changes in the levels of neurotrophins (BDNF and IGF-1)/inflammatory cytokines (TNF-α) only approached significance. These findings suggested that in older adults with aMCI, not only aerobic but also resistance exercise is effective with regard to increasing neurotrophins, reducing some inflammatory cytokines, and facilitating neurocognitive performance. However, the aerobic and resistance exercise modes likely employed divergent molecular mechanisms on neurocognitive facilitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.