Abstract

The stable calcium (Ca) isotopes offer a minimally invasive method for assessing Ca balance in the body, providing a new avenue for research and clinical applications. In this study, we measured the Ca isotopic composition of soft tissues (brain, muscle, liver, and kidney), mineralized tissue (bone), and blood (plasma) from 10 mice (5 females and 5 males) with three different genetic backgrounds and same age (3 months old). The results reveal a distinctive Ca isotopic composition in different body compartments of mice, primally controlled by each compartment's unique Ca metabolism and genetic background, independent of sex. The bones are enriched in the lighter Ca isotopes (δ44/40Cabone = - 0.10 ± 0.55 ‰) compared to blood and other soft tissues, reflecting the preferential incorporation of lighter Ca isotopes through bone formation, while heavier Ca isotopes remain preferentially in blood. The brain and muscle are enriched in lighter Ca isotopes (δ44/40Cabrain = - 0.10 ± 0.53 ‰; δ44/40Camuscle = 0.19 ± 0.41 ‰) relative to blood and other soft tissues, making the brain the isotopically lightest soft tissues of the mouse body. In contrast, the kidney is enriched in heavier isotopes (δ44/40Cakidney = 0.86 ± 0.31 ‰) reflecting filtration and reabsorption by the kidney. This study provides important insight into the Ca isotopic composition of various body compartments and fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.