Abstract
Fire source distinction is useful in reducing the occurrence of false alarms and in choosing an effective fire extinguishing medium. This study was aimed at distinguishing fire sources through a smoke analysis. For this purpose, a smoke detection chamber was created, which was equipped with one light source and several light sensors for enabling simultaneous detection of light extinction and scattering, respectively. The test fires considered in this study had two kinds of sources: single fire source (paper, wood, and flammable liquid) and mixed fire source (paper-wood, paper-flammable liquid, and wood-flammable liquid mixtures). The amounts of extinction and scattering for each fire were measured experimentally, and the discrete probability distributions were calculated from the measured scattering amount. The optical characteristics of each fire were obtained using extinction data and the calculated probability distributions. These optical characteristics were then used for learning of neural networks, and the learned neural networks were used to distinguish fire sources from smoke generated in the case of both single fires and mixed fires. Results revealed that the neural networks could precisely distinguish fire sources on the basis of the smoke particles in the case of both single fires and mixed fires. The results of this study are expected to be useful in developing an advanced smoke detector that can distinguish fire sources in addition to detecting smoke.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.