Abstract
Microstructure, electrochemical impedance, and Tafel and potentiodynamic polarizations were characterized to investigate the electrochemical anodic dissolution behavior of Ti-6Al-4V alloy produced by the laser solid forming (LSF) additive manufacturing process with a specific focus on the distinction on different planes. Electrochemical measurements show that the anodic dissolution characteristic of LSFed Ti-6Al-4V reveals anisotropic behavior on different planes. The horizontal-plane (XOY plane) is more resistant to corrosion than the vertical-plane (XOZ plane) in 15 wt% NaCl solution. Additionally, the vertical-plane shows a lower initial machining potential for the process of electrochemical machining compared to the horizontal-plane. The microstructure of Ti-6Al-4V alloy deposit is composed of dominant α-laths and small amounts of β phase, and its horizontal-plane has higher content of the β phase, lower content of the α phase, slightly finer α-laths, and more uneven α-lath width distribution compared to the vertical-plane. These differences in the microstructural characteristics produce the distinctions observed in the electrochemical anodic dissolution behavior of LSFed Ti-6Al-4V alloy on the vertical- and horizontal-planes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.