Abstract

Inherited C3 deficiency may result from mutations in the C3 gene affecting transcription or translation (type I deficiency). We described a type II C3 deficiency caused by a mutation yielding an abnormal non-secreted C3. The post-translational processing of mutant and normal C3 was analyzed in fibroblasts grown from skin biopsies. Mutant C3 is located mainly in the endoplasmic reticulum (ER), whereas normal C3 is seen evenly distributed throughout the cytoplasm. Most of the mutant C3 is degraded within the cell, and only a small fraction (around 8%) is secreted after 20 h chase. Processing of C3 at 19 degrees C was reduced in normal fibroblasts but completely blocked in mutant fibroblasts. ATP depletion blocked processing of normal proC3 to C3. In contrast, the mutant proC3 was partly degraded in ATP-depleted cells, yet its complete degradation and secretion were blocked. Intracellular degradation of the mutant C3 was not inhibited by NH4Cl, thus excluding cleavage within lysosomes. These results demonstrate that the type II mutant C3 studied here is retained in the ER probably by a quality contol machinery that identifies abnormal protein folding. Consequently, it is destined to undergo a two-step intracellular degradation; an initial ATP-independent step followed by an ATP-dependent step.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call