Abstract

Black locust (Robinia pseudoacacia) is widely planted throughout semiarid and subhumid regions of the Loess Plateau of China. Determining the changes in transpiration of this species in different climatic areas is important for revealing the acclimation mechanism of black locust and developing suitable forest management practices, particularly in the context of global climate change. Here, sap flow and canopy conductance of black locust plantation trees in semiarid (Yan’an) and subhumid (Yongshou) sites were quantified using Granier-type thermal dissipation probes and concurrent environmental observations from 2012 to 2017. Several physiological parameters were measured throughout the growing season. The results showed that sap flow was correlated with phenological factors across seasons within a year. However, interannual changes in sap flow were affected mainly by the reference evapotranspiration (ET0) at the Yongshou site, and jointly by precipitation (P), soil water content, and P/ET0 at the Yan’an site. Sap flow response to meteorological factors showed less discrepancy between pre- and post-rainfall periods at the Yan’an site. Moreover, canopy conductance fluctuated less with a wider range of vapor pressure deficit (VPD) and the slope of canopy resistance as a function of VPD was lower, indicating relatively lower sensitivity of stomatal conductance to environmental factors in Yan’an site. Physiological parameters, except for predawn leaf water potential, were significantly different between the two sites. The results suggested that black locust tended to reduce transpiration, modify leaf morphology, and improve water use efficiency to enhance its adaptability to the dryer site. The species changes stomatal regulation characteristics and general growth rate to acclimatize to distinct water habitats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call