Abstract
BackgroundTropospheric ozone (O3) is a secondary air pollutant and anthropogenic greenhouse gas. Concentrations of tropospheric O3 ([O3] have more than doubled since the Industrial Revolution, and are high enough to damage plant productivity. Soybean (Glycine max L. Merr.) is the world’s most important legume crop and is sensitive to O3. Current ground-level [O3] are estimated to reduce global soybean yields by 6% to 16%. In order to understand transcriptional mechanisms of yield loss in soybean, we examined the transcriptome of soybean flower and pod tissues exposed to elevated [O3] using RNA-Sequencing.ResultsElevated [O3] elicited a strong transcriptional response in flower and pod tissues, with increased expression of genes involved in signaling in both tissues. Flower tissues also responded to elevated [O3] by increasing expression of genes encoding matrix metalloproteinases (MMPs). MMPs are zinc- and calcium-dependent endopeptidases that have roles in programmed cell death, senescence and stress response in plants. Pod tissues responded to elevated [O3] by increasing expression of xyloglucan endotransglucosylase/hydrolase genes, which may be involved with increased pod dehiscence in elevated [O3].ConclusionsThis study established that gene expression in reproductive tissues of soybean are impacted by elevated [O3], and flowers and pods have distinct transcriptomic responses to elevated [O3].
Highlights
Tropospheric ozone (O3) is a secondary air pollutant and anthropogenic greenhouse gas
Overlapping effects of elevated [O3] on the transcriptome of flower and pod tissue in soybean Flower and pod development in soybean are sensitive to environmental stress [23,24,38,39], and elevated [O3] significantly impacted pod production, but not flower production (Figure 1)
More than three times as many genes were differentially expressed in flower tissue (4,595 genes) than in pod tissue (1,375 genes; Figure 3) in response to elevated [O3], and only 277 of those genes were differentially expressed in both flowers and pods (Figure 3)
Summary
Elevated [O3] elicited a strong transcriptional response in flower and pod tissues, with increased expression of genes involved in signaling in both tissues. Flower tissues responded to elevated [O3] by increasing expression of genes encoding matrix metalloproteinases (MMPs). MMPs are zinc- and calcium-dependent endopeptidases that have roles in programmed cell death, senescence and stress response in plants. Pod tissues responded to elevated [O3] by increasing expression of xyloglucan endotransglucosylase/hydrolase genes, which may be involved with increased pod dehiscence in elevated [O3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.