Abstract

Tat stimulates HIV-1 gene expression during transcription initiation and elongation. Tat functions primarily through specific interactions with TAR RNA and several putative cellular cofactors to increase the processivity of RNA polymerase II complexes during HIV-1 transcription elongation. Although HIV-1 transactivation by Tat in most cell types requires intact TAR sequences, previous reports demonstrate that Tat transactivates HIV-1 long terminal repeat (LTR)-directed gene expression in several central nervous system-derived astrocytic/glial cell lines in the absence of TAR. Within this study, transient expression assays performed in the astrocytic/glial cell line, U87-MG, confirm that κB elements within the HIV-1 LTR mediate TAR-independent transactivation by Tat and demonstrate additionally that distinct amino acid residues within the cysteine-rich activation domain of Tat are required for TAR-independent versus TAR-dependent transactivation. Established U87-MG cell lines expressing a transdominant negative mutant of IκBα, IκBαΔN, fail to support TAR-independent transactivation by Tat, suggesting that binding of NF-κB to κB enhancer elements within the HIV-1 LTR is necessary for Tat-mediated transactivation in the absence of TAR. Ribonucleic acid protection analyses of promoter-proximal and -distal transcripts derived from TAR-deleted and TAR-containing HIV-1 LTR reporter constructs in U87-MG cells indicate that the predominant effect of Tat during TAR-independent transactivation occurs at the level of transcription initiation, whereas a prominent elongation effect of Tat is observed in the presence of TAR. These data suggest an alternative regulatory pathway for Tat transactivation in specific cells derived from the central nervous system that is independent of TAR and that requires direct or indirect interaction of Tat with NF-κB-binding sites in the HIV-1 LTR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.