Abstract

Glioblastoma multiforme (GBM) cells show different responses to resveratrol, for unknown reasons. Our data from human medulloblastoma cells and primary cultures of rat brain cells revealed an inverse correlation of sulfonation activity with resveratrol sensitivities, providing a clue to the underlying mechanisms of the variable sensitivities of GBM cells to resveratrol. In this study, we found that U251 cells were sensitive and LN229 cells were insensitive to resveratrol. Thus, these two cell lines were taken as comparable models for elucidating the influence of sulfonation activities on resveratrol sensitivity. HPLC showed identical resveratrol metabolic patterns in both cell lines. LC/MS and high-resolution mass MS analyses further demonstrated that resveratrol monosulfate generated by sulfotransferases (SULTs) was the major metabolite of human GBM cells. The levels of brain-associated SULT (SULT1A1, SULT1C2, and SULT4A1) expression in U251 cells were lower than those in LN229 cells, suggesting the inverse relationship of SULT-mediated sulfonation activity with high intracellular resveratrol bioavailability and resveratrol sensitivity of human GBM cells. Furthermore, immunohistochemical staining revealed reductions in expression of the three brain-associated SULTs in 72.8%, 47.5% and 66.3% of astrocytomas, respectively. Therefore, the levels of brain-associated SULTs and sulfonation activity mediated by them could be important parameters for evaluating the potential response of human GBM cells to resveratrol, and may have value in the personalized treatment of GBMs with resveratrol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call