Abstract
Although leukosialin (CD43) membrane expression decreases during neutrophil apoptosis, the CD43 molecule, unexpectedly, is neither proteolyzed nor internalized. We thus wondered whether it could be shed on bleb-derived membrane vesicles. Membrane blebbing is a transient event, hardly appreciated during the asynchronous, spontaneous apoptosis of neutrophils. Cell pre-synchronization at 15 degrees C made it possible to observe numerous blebbing neutrophils for a short 1-h period at 37 degrees C. CD43 down-regulation co-occurred with the blebbing stage and phosphatidylserine externalization, shortly after mitochondria depolarization and before nuclear condensation. Blebs detaching from the cell body were observed by time lapse fluorescence microscopy, and the release of bleb-derived vesicles was followed by flow cytometry. Phosphatidylserine externalization required caspases and protein kinase C (PKC) but not the myosin light chain kinase (MLCK). By contrast, bleb formation and release was caspase- and PKC-independent but required an active MLCK, whereas CD43 down-regulation involved caspases but neither PKC nor MLCK. Furthermore, CD43 appeared mostly excluded from membrane blebs by electron microscopy. Thus, CD43 down-regulation does not result from the release of bleb-derived vesicles. Ultracentrifugation of apoptotic cell supernatants made it possible to recover <1 microM microparticles, which contained the entire CD43 molecule. These microparticles expressed neutrophil membrane markers such as CD11b, CD66b, and CD63, together with CD43. In conclusion, we show that the three early membrane events of apoptosis, namely blebbing, phosphatidylserine externalization, and CD43 down-regulation, result from different signaling pathways and can occur independently from one another. CD43 down-regulation results from the shedding of microparticles released during apoptosis but unrelated to the blebbing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.