Abstract
Pancreatic stellate cells (PSCs) play a major role in promoting pancreatic fibrosis. Transforming growth factor-beta(1) (TGF-beta(1)) regulates PSC activation and proliferation in an autocrine manner. The intracellular signaling pathways of the regulation were examined in this study. Immunoprecipitation and immunocytochemistry revealed that Smad2, Smad3, and Smad4 were functionally expressed in PSCs. Adenovirus-mediated expression of Smad2, Smad3, or dominant-negative Smad2/3 did not alter TGF-beta(1) mRNA expression level or the amount of autocrine TGF-beta(1) peptide. However, expression of dominant-negative Smad2/3 inhibited PSC activation and enhanced their proliferation. Co-expression of Smad2 with dominant-negative Smad2/3 restored PSC activation inhibited by dominant-negative Smad2/3 expression without changing their proliferation. By contrast, co-expression of Smad3 with dominant-negative Smad2/3 attenuated PSC proliferation enhanced by dominant-negative Smad2/3 expression without altering their activation. Exogenous TGF-beta(1) increased TGFbeta(1) mRNA expression in PSCs. However, PD98059, a specific inhibitor of mitogen-activated protein kinase kinase (MEK1), inhibited ERK activation by TGF-beta(1), and consequently attenuated TGF-beta(1) enhancement of its own mRNA expression in PSCs. We propose that TGF-beta(1) differentially regulates PSC activation, proliferation, and TGF-beta(1) mRNA expression through Smad2-, Smad3-, and ERK-dependent pathways, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.