Abstract

β-Lactam antibiotics were the earliest discovered and are the most widely used group of antibiotics that work by inactivating penicillin-binding proteins to inhibit peptidoglycan biosynthesis. As one of the most efficient defense strategies, many bacteria produce β-lactam-degrading enzymes, β-lactamases, whose biochemical functions and regulation have been extensively studied. A signal transduction pathway for β-lactamase induction by β-lactam antibiotics, consisting of the major peptidoglycan recycling enzymes and the LysR-type transcriptional regulator, AmpR, has been recently unveiled in some bacteria. Because inactivation of some of these proteins, especially the permease AmpG and the β-hexosaminidase NagZ, results in substantially elevated susceptibility to the antibiotics, these have been recognized as potential therapeutic targets. Here, we show a contrasting scenario in Shewanella oneidensis, in which the homologue of AmpR is absent. Loss of AmpG or NagZ enhances β-lactam resistance drastically, whereas other identified major peptidoglycan recycling enzymes are dispensable. Moreover, our data indicate that there exists a parallel signal transduction pathway for β-lactamase induction, which is independent of either AmpG or NagZ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call