Abstract

Despite identification of >100 potassium channel subunits, relatively little is known about their roles in synaptic transmission. To address this issue we recorded presynaptic potassium currents (IPK) directly from the calyx of Held terminal in brainstem slices of rats. IPK was composed of a 4-aminopyridine (4-AP)-sensitive component and a smaller 4-AP-insensitive component composed of an iberiotoxin-sensitive current and an unidentified slowly activating potassium current. IPK could also be separated into a tetraethylammonium (TEA; 1 mm)-sensitive high-voltage-activated component and a margatoxin (10 nm)-sensitive low-voltage-activated component, which was also blocked by dendrotoxin-I (200 nm) and tityustoxin-Kalpha (100 nm). In outside-out patches excised from calyceal terminals, TEA (1 mm) consistently and to a large extent attenuated IPK, whereas margatoxin attenuated IPK only in a subset of patches (three of seven). Immunocytochemical examination using Kv subtype-specific antibodies indicated that multiple Kv1 and Kv3 subtypes were present at the calyceal terminal. In paired presynaptic and postsynaptic whole-cell recordings, TEA (1 mm) increased both the duration and peak amplitude of presynaptic action potentials and simultaneously potentiated EPSCs. Margatoxin alone had no such effect but reduced the amount of depolarization required for action potential generation, thereby inducing a burst of spikes when the nerve terminal was depolarized for a prolonged period. Thus, at the calyx of Held terminal, Kv3 channels directly regulate evoked transmitter release, whereas Kv1 channels reduce nerve terminal excitability, thereby preventing aberrant transmitter release. We conclude that both Kv3 and Kv1 channels contribute differentially to maintaining the fidelity of synaptic transmission at the calyx of Held.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.