Abstract

Reduced accumulation of the GTP-binding protein G(i)alpha subunit CPG-1, due either to hypovirus infection or transgenic cosuppression, correlates with virulence attenuation of the chestnut blight fungus, Cryphonectria parasitica. The role of G protein-mediated signal transduction in fungal virulence was further examined by targeted disruption of the gene cpg-1, encoding CPG-1, and a second Galpha gene, cpg-2, encoding the subunit CPG-2. Disruption of cpg-1 resulted in a set of phenotypic changes similar to, but more severe than, those associated with hypovirus infection. Changes included a marked reduction in fungal growth rate and loss of virulence, asexual sporulation, female fertility, and transcriptional induction of the gene lac-1, encoding the enzyme laccase. In contrast, cpg-2 disruption resulted in only slight reductions in growth rate and asexual sporulation and no significant reduction in virulence, female fertility, or lac-1 mRNA inducibility. These results provide definitive confirmation of previous correlative evidence that suggested a requirement of CPG-1-linked signaling for a number of fungal processes, including virulence and reproduction, while demonstrating that a second Galpha, CPG-2, is dispensable for these processes. They also significantly strengthen support for the apparent linkage between hypovirus-mediated disruption of G protein signal transduction and attenuation of fungal virulence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call