Abstract
Most previous studies have reported a decrease in global tropical cyclone (TC) genesis frequency (TCGF) under anthropogenic warming. However, little attention has been drawn to the influence of sea surface temperature (SST) warming patterns on TCGF changes. Here, we investigate the impacts of three distinct SST warming patterns on global TCGF: uniform SST warming, nonuniform (El Niño-like) SST warming, and a combination of both. Results show that spatio-uniform SST warming has a limited impact on global TCGF, instead redistributing the TC genesis locations. Conversely, nonuniform SST warming significantly suppresses global TCGF. The combined warming produces a similar decrease in TCGF to nonuniform warming albeit with differences in spatial distribution. This indicates the dominant role of nonuniform SST warming in affecting TCGF and highlights the nonlinearity of the process. Further analysis shows that these differences in TCGF primarily stem from the distinct responses of tropical circulations to the three warming patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.