Abstract

The molecular mechanisms involving in B-cell survival/proliferation are poorly understood. Here we investigated the molecules affecting the survival of human naïve and memory B cells. Without stimulation, naïve B cells survived longer than memory B cells. Moreover, the viability of memory B cells decreased more rapidly than that of naïve B cells following with Staphylococcus aureus Cowan strain (SAC), anti-immunoglobulin (Ig), or anti-CD40 stimulation, but displayed the same levels of survival following CpG DNA stimulation. We analyzed the transcriptional differences between B-cell subsets by gene expression profiling, and identified 15 genes significantly correlated to survival/proliferation. Among them, IL-21 receptor (IL-21R) and T-cell leukemia 1 ( TCL1) proto-oncogene were highly expressed in naïve B cells. IL-21 induced the proliferation of both naïve and memory B cells. Marked phosphorylation of Akt was found in naïve B cells compared with memory B cells. This study suggests that naive and memory B cells are regulated by several distinct molecules, and the IL-21R and TCL1/Akt pathways might play crucial roles in naïve B cells for their maintenance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.