Abstract

Hepatitis B virus (HBV) is a small DNA virus that replicates by reverse transcription of a terminally redundant RNA, the pregenome. Specific packaging of this transcript into viral capsids is mediated by interaction of the reverse transcriptase, P protein, with the 5'-proximal encapsidation signal epsilon, epsilon-function is correlated with the formation of a hairpin structure containing a bulge and a loop, each consisting of 6 nt. To analyse the importance of primary sequence in these regions, we have combined selection of encapsidation competent individuals from pools of randomized epsilon-sequences in transfected cells with in vitro amplification, thus bypassing the current experimental limitations of the HBV system. While no alterations of the authentic loop sequence were detectable, many different sequences were tolerated in the 3'-part of the bulge. However, at the two 5'-proximal bulge positions the wt sequence was strongly selected for, indicating that for RNA packaging close contacts between protein and the 5'- but not the 3'-part of the bulge are important. Such a bipartite organisation provides a structural basis for the recently demonstrated special role of the 3'-part of the bulge as template for the first nucleotides of (-)-strand DNA in HBV reverse transcription.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.