Abstract

Variant human cystatin C (L68Q) is an amyloidogenic protein. It deposits in the cerebral vasculature of Icelandic patients with cerebral amyloid angiopathy, leading to stroke. Wild-type and variant cystatin C are cysteine proteinase inhibitors which form concentration dependent inactive dimers; however, variant cystatin C dimerizes at lower concentrations and has an increased susceptibility to a serine protease. We studied the effect of the L68Q amino acid substitution on cystatin C properties, utilizing full length cystatin C purified in mild conditions from media of cells stably transfected with either the wild-type or variant cystatin C genes. The variant cystatin C forms fibrils in vitro detectable by electron microscopy in conditions in which the wild-type protein forms amorphous aggregates. We also show by circular dichroism, steady-state fluorescence and Fourier-transformed infrared spectroscopy that the amino acid substitution modifies cystatin C structure by destabilizing alpha-helical structures and exposing the tryptophan residue to a more polar environment, yielding a more unfolded molecule. These spectral changes demonstrate that variant cystatin C has a three-dimensional structure different from that of the wild-type protein. The structural differences between variant and wild-type cystatin C account for the susceptibility of the variant protein to unfolding, proteolysis and fibrillogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.