Abstract

Bacterioplankton and protists fulfil key roles in marine ecosystems. Understanding the abundance and distribution of these organisms through space and time is a central focus of biological oceanographers. The role of oceanographic features, in addition to environmental conditions, in structuring bacterioplankton and protist communities has been increasingly recognised. We investigated patterns in bacterioplankton and protist diversity and community structure across the Southland Front system, a compaction of the subtropical front zone, to the east of New Zealand’s South Island. We collected 24 seawater samples across a ~65 km transect and characterised bacterioplankton and protist community composition using high-throughput sequencing of the 16S and 18S rRNA genes, respectively. We identified frontal waters as a bacterioplankton diversity hotspot relative to neighbouring subtropical and subantarctic waters, but did not find evidence of this effect in protists. Bacterioplankton showed pronounced spatial structuring across the front, with communities closely tracking water type through the region. Protist communities also tracked water type through the region, though this effect was substantially less pronounced. We used an ecological null model approach to demonstrate that protist communities are primarily assembled through stochastic processes, whilst bacterioplankton are primarily assembled through deterministic processes across the Southland Front system. We suggest that this divergence emerges from fundamental differences in the characteristics of bacterioplankton and protist communities. Our findings add to a growing body of literature highlighting the importance of oceanographic features in shaping bacterioplankton and protist communities, promoting the necessity for such features to be considered more explicitly in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call