Abstract

BackgroundCortactin activates the actin-related 2/3 (Arp2/3) complex promoting actin polymerization to remodel cell architecture in multiple processes (e.g. cell migration, membrane trafficking, invadopodia formation etc.). Moreover, it was called the Achilles' heel of the actin cytoskeleton because many pathogens hijack signals that converge on this oncogenic scaffolding protein. Cortactin is able to modulate N-WASP activation in vitro in a phosphorylation-dependent fashion. Thus Erk-phosphorylated cortactin is efficient in activating N-WASP through its SH3 domain, while Src-phosphorylated cortactin is not. This could represent a switch on/off mechanism controlling the coordinated action of both nucleator promoting factors (NPFs). Pedestal formation by enteropathogenic Escherichia coli (EPEC) requires N-WASP activation. N-WASP is recruited by the cell adapter Nck which binds a major tyrosine-phosphorylated site of a bacterial injected effector, Tir (translocated intimin receptor). Tir-Nck-N-WASP axis defines the current major pathway to actin polymerization on pedestals. In addition, it was recently reported that EPEC induces tyrosine phosphorylation of cortactin.ResultsHere we demonstrate that cortactin phosphorylation is absent on N-WASP deficient cells, but is recovered by re-expression of N-WASP. We used purified recombinant cortactin and Tir proteins to demonstrate a direct interaction of both that promoted Arp2/3 complex-mediated actin polymerization in vitro, independently of cortactin phosphorylation.ConclusionWe propose that cortactin binds Tir through its N-terminal part in a tyrosine and serine phosphorylation independent manner while SH3 domain binding and activation of N-WASP is regulated by tyrosine and serine mediated phosphorylation of cortactin. Therefore cortactin could act on Tir-Nck-N-WASP pathway and control a possible cycling activity of N-WASP underlying pedestal formation.

Highlights

  • Cortactin activates the actin-related 2/3 (Arp2/3) complex promoting actin polymerization to remodel cell architecture in multiple processes

  • The type III secretion system delivers into host cells the translocated intimin receptor (Tir), which is inserted into the cell plasma membrane such that a loop is exposed on the cell surface that binds to another bacterial

  • This study suggests that cortactin is recruited through its α-helical region, and the authors conclude that tyrosine phosphorylation is relevant to pedestal formation, whereas serine phosphorylation seems to have no effect on actin assembly underneath the bacteria [23]

Read more

Summary

Introduction

Cortactin activates the actin-related 2/3 (Arp2/3) complex promoting actin polymerization to remodel cell architecture in multiple processes (e.g. cell migration, membrane trafficking, invadopodia formation etc.). Cell Communication and Signaling 2009, 7:11 http://www.biosignaling.com/content/7/1/11 protein, the adhesin intimin [2] This binding induces the clustering of Tir, followed by its phosphorylation on tyrosine residue 474 in the cytoplasmic C-terminal domain. The phosphotyrosine moiety recruits the host cell adaptor protein Nck [3], which binds and presumably activates NWASP, leading to actin polymerization mediated by the Arp2/3 complex [4]. This pathway is recognized as the principal one operating in EPEC, another Nck-independent pathway has been described in these bacteria [5]. The complexity of EPEC signal transduction is not fully understood [6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call