Abstract

Professional antigen-presenting cells are critical components of both the innate and adaptive immune responses. Although dendritic cells (DCs) are generally thought to be the primary activators of naive T cells, macrophages have also been shown to fulfill this role. As with DCs, the capacity to induce optimal activation of T cells requires that macrophages undergo a process that results in the increased expression of costimulatory molecules, such as CD40, CD80, and CD86, and the production of cytokines. In this study we analyzed the effect of infection of macrophages generated from BALB/c mice with the paramyxovirus simian virus 5 (SV5). Here we have shown that bone marrow-derived macrophages (BMMs) are not productively infected at any multiplicity of infection tested. Analysis of activation markers revealed that SV5-infected BMMs robustly upregulated CD40 and modestly upregulated CD86, but did not upregulate the expression of CD80. Further, SV5-infected BMMs secreted low levels of interferon-beta and interleukin (IL)-12p40, but high levels of tumor necrosis factor-alpha and IL-6. Intriguingly, upregulation of these molecules on BMMs, unlike our previous results using bone marrow-derived dendritic cells, was not dependent on live virus. These findings provide evidence that different professional antigen-presenting cells can detect and respond to virus via distinct mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call