Abstract

In 1963, Peter Hagis, Jr. provided a Hardy-Ramanujan-Rademacher-type convergent series that can be used to compute an isolated value of the partition function $Q(n)$ which counts partitions of $n$ into distinct parts. Computing $Q(n)$ by this method requires arithmetic with very high-precision approximate real numbers and it is complicated. In this paper, we investigate new connections between partitions into distinct parts and overpartitions and obtain a surprising recurrence relation for the number of partitions of $n$ into distinct parts. By particularization of this relation, we derive two different linear recurrence relations for the partition function $Q(n)$. One of them involves the thrice square numbers and the other involves the generalized octagonal numbers. The recurrence relation involving the thrice square numbers provide a simple and fast computation of the value of $Q(n)$. This method uses only (large) integer arithmetic and it is simpler to program. Infinite families of linear inequalities involving partitions into distinct parts and overpartitions are introduced in this context.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.