Abstract
Abstract. Changing climatic conditions can shape the strength and extent of the oxygen minimum zone (OMZ). The presence and variability of the OMZ in the Arabian Sea is of importance to the latter's ecosystem. The state of oxygenation has, for instance, an impact on the pelagic and benthic faunal community or the nitrogen and carbon cycles. It is important to understand the dynamics of the OMZ and related marine environmental conditions because of their climate feedbacks. In this study, we combined three independent proxies to reconstruct the oxygenation state of the water column and bottom water in the Gulf of Oman for the past 43 kyr approximately. This multi-proxy approach is done for the first time at the northeastern Oman margin located in the Gulf of Oman. We used bulk sedimentary nitrogen isotopes (δ15N) and the alkane ratio (lycopane +n-C35)/n-C31 and benthic foraminiferal faunal analysis to reconstruct the strength of the OMZ in the water column and bottom water oxygenation, respectively. Our results show that the Gulf of Oman experienced strong pronounced OMZ and bottom water deoxygenation during the Holocene. In contrast, during Marine Isotope Stage 2 (MIS 2), including the Last Glacial Maximum (LGM), the Gulf of Oman was very well ventilated, with a highly diverse benthic foraminiferal community. This may have been caused by stronger wind-induced mixing and better ventilation by oxygen-rich water masses. Our results also show moderate oxygenation during MIS 3, with deoxygenation events during most of the warmer Dansgaard–Oeschger (D–O) events. We propose two distinct oxygenation modes for the Gulf of Oman: (1) a stable period of either strongly pronounced water column OMZ and bottom water deoxygenation or well-oxygenated water column and bottom water conditions and (2) an unstable period of oscillating oxygenation states between moderately oxygenated (stadials) and deoxygenated (interstadials, D–O events) conditions. The unstable period may be triggered by an interstadial Atlantic meridional overturning circulation (AMOC) mode, which is required to initiate D–O events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.