Abstract

The mutant p53 proteins and their corresponding cellular response can be manipulated by novel quinazolinone derivatives 4–8 (a–i) in p53 mutant cancer cells. Of the two most potent compounds, 4a exhibited promising broad-spectrum anti-cancer effects, whereas 6c showed selective and exclusive inhibition activity in p53 mutant cancer cell lines but low toxicity to wild-type p53 cancer cell A375 and normal lung fibroblast WI-38 cells. Furthermore, 6c exhibited a more sophisticated mechanism for cell-destructive response by causing S/G2 phase arrest effect and cell size reduction. Compared with the cellular response of 6b and genetic background of cell lines studied, p53 mutation was found to be the key factor and main target for 6c evoked cell-destructive response. Molecular mechanism studies indicated that p53 phosphorylation and acetylation dual-targeting inhibitor 6c exerted anti-cancer activities with a special mechanism in evoking cell apoptosis by arresting mutant p53 function to trigger the deregulation of Cdk2 caused Bim-mediated apoptosis. To the best of our knowledge, 6c is the first quinazolinone derivative to dictate mutant p53 function for apoptotic cell death.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.