Abstract

An animal's preference for many chemosensory cues remains constant despite dramatic changes in the animal's internal state. The mechanisms that maintain chemosensory preference across different physiological contexts remain poorly understood. We previously showed that distinct patterns of neural activity and motor output are evoked by carbon dioxide (CO2) in starved adults vs dauers of Caenorhabditis elegans, despite the two life stages displaying the same preference (attraction) for CO2. However, how the distinct CO2-evoked neural dynamics and motor patterns contribute to CO2 attraction at the two life stages remained unclear. Here, using a CO2 chemotaxis assay, we show that different interneurons are employed to drive CO2 attraction at the two life stages. We also investigate the molecular mechanisms that mediate CO2 attraction in dauers vs adults. We show that insulin signaling promotes CO2 attraction in dauers but not starved adults and that different combinations of neurotransmitters and neuropeptides are used for CO2 attraction at the two life stages. Our findings provide new insight into the distinct molecular and cellular mechanisms used by C. elegans at two different life stages to generate attractive behavioral responses to CO2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call