Abstract

Both human and animal studies support the idea that memory consolidation of waking experiences occurs during sleep. In experimental models, rapid-eye-movement (REM) sleep has been shown to be necessary for cortical synaptic plasticity and for the acquisition of spatial and nonspatial memory. Because the hippocampus and medial prefrontal cortex (mPFC) play distinct and important roles in memory processing, we sought to determine the role of sleep in the maintenance of long-term potentiation (LTP) in the dentate gyrus (DG) and mPFC of freely behaving rats. Animals were implanted with stimulating and recording electrodes, either in the medial perforant path and DG or CA1 and mPFC, for the recording of field potentials. Following baseline recordings, LTP was induced and the animals were assigned to three different groups: REM sleep-deprived (REMD), total sleep-deprived (TSD) and control which were allowed to sleep (SLEEP). The deprivation protocol lasted for 4 h and the recordings were made during the first hour and at 5, 24 and 48 h following LTP induction. Our results show that REMD impaired the maintenance of late-phase (48-h) LTP in the DG, whereas it enhanced it in the mPFC. Sleep, therefore, could have distinct effects on the consolidation of different forms of memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call