Abstract

Establishment of the cytoarchitecture of the central nervous system reflects the stereotyped cell migration and proliferation of precursor cells during development. In vitro analyses have provided extensive information on the control of proliferation and differentiation of oligodendrocyte precursors (OPCs), but less is known about the migratory behavior of these cells in vivo. Here we utilize a transgenic mouse line expressing enhanced green fluorescent protein (EGFP) under the proteolipid protein promoter (PLP-EGFP mice) to visualize directly the behaviors of OPCs in developing spinal cord slices. During early development, OPCs disperse from their origin at the ventricular zone by using saltatory migration. This involves orientation of the cell with a leading edge toward the pial surface and alternating stationary and fast-moving phases and dramatic shape changes. Once cells exit the ventricular zone, they exhibit an exploratory mode of migration characterized by persistent translocation without dramatic changes in cell morphology. The control of migration, proliferation, and cytokinesis of OPCs appear to be closely linked. In netrin-1 mutant spinal cords that lack dispersal cues, OPC migration rates were not significantly different, but the trajectories were altered, and numbers of migrating cells were dramatically reduced. In contrast to DNA replication that occurs at the ventricular zone or throughout the spinal cord neuropil, cell division or cytokinesis of OPCs occurs predominantly at the interface between gray and white matters, with the majority of cleavage planes parallel to the pial surface. These studies suggest that positional cues are critical for regulating OPC behavior during spinal cord development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.