Abstract

Cell competition (CC)—the sensing and elimination of less fit “loser” cells by neighbouring “winner” cells—was first described in Drosophila. Although proposed as a selection mechanism to optimize tissue and organ development, its evolutionary generality remains unclear. Here, by employing live-imaging, lineage-tracing, single cell transcriptomics and genetics, we unearth two intriguing CC mechanisms that sequentially shape and maintain stratified tissue architecture during mouse skin development. In early embryonic epidermis, winner progenitors within the single-layered epithelium kill and clear neighbouring losers by engulfment. Upon stratification and skin barrier formation, the basal layer instead expels losers through a homeostatic upward flux of differentiating progeny. This CC switch is physiologically relevant: when perturbed, so too is barrier formation. Our findings establish CC as a selective force to optimize vertebrate tissue function, and illuminate how a tissue dynamically adjusts CC strategies to preserve fitness as it encounters increased architectural complexity during morphogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call