Abstract

The product specificity and mechanistic peculiarities of two allene oxide synthases, tomato LeAOS3 (CYP74C3) and maize ZmAOS (CYP74A19), were studied. Enzymes were vortexed with linoleic acid 9-hydroperoxide in a hexane-water biphasic system (20-60 s, 0 °C). Synthesized allene oxide (9,10-epoxy-10,12-octadecadienoic acid; 9,10-EOD) was trapped with ethanol. Incubations with ZmAOS produced predominantly 9,10-EOD, which was converted into an ethanolysis product, (12Z)-9-ethoxy-10-oxo-12-octadecenoic acid. LeAOS3 produced the same trapping product and 9(R)-α-ketol at nearly equimolar yields. Thus, both α-ketol and 9,10-EOD appeared to be kinetically controlled LeAOS3 products. NMR data for 9,10-EOD (Me) preparations revealed that ZmAOS specifically synthesized 10(E)-9,10-EOD, whereas LeAOS3 produced a roughly 4:1 mixture of 10(E) and 10(Z) isomers. The cyclopentenone cis-10-oxo-11-phytoenoic acid (10-oxo-PEA) and the Favorskii-type product yields were appreciable with LeAOS3, but dramatically lower with ZmAOS. The 9,10-EOD (free acid) kept in hexane transformed into macrolactones but did not cyclize. LeAOS3 catalysis is supposed to produce a higher proportion of oxyallyl diradical (a valence tautomer of allene oxide), which is a direct precursor of both cyclopentenone and cyclopropanone. This may explain the substantial yields of cis-10-oxo-PEA and the Favorskii-type product (via cyclopropanone) with LeAOS3. Furthermore, 10(Z)-9,10-EOD may be produced via the reverse formation of allene oxide from oxyallyl diradical.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call