Abstract

The retinoblastoma (RB) protein represses global RNA polymerase III transcription of genes that encode nontranslated RNAs, potentially to control cell growth. However, RNA polymerase III-transcribed genes exhibit diverse promoter structures and factor requirements for transcription, and a universal mechanism explaining global repression is uncertain. We show that RB represses different classes of RNA polymerase III-transcribed genes via distinct mechanisms. Repression of human U6 snRNA (class 3) gene transcription occurs through stable promoter occupancy by RB, whereas repression of adenovirus VAI (class 2) gene transcription occurs in the absence of detectable RB-promoter association. Endogenous RB binds to a human U6 snRNA gene in both normal and cancer cells that maintain functional RB but not in HeLa cells whose RB function is disrupted by the papillomavirus E7 protein. Both U6 promoter association and transcriptional repression require the A/B pocket domain and C region of RB. These regions of RB contribute to U6 promoter targeting through numerous interactions with components of the U6 general transcription machinery, including SNAP(C) and TFIIIB. Importantly, RB also concurrently occupies a U6 promoter with RNA polymerase III during repression. These observations suggest a novel mechanism for RB function wherein RB can repress U6 transcription at critical steps subsequent to RNA polymerase III recruitment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.