Abstract

We demonstrate that pretreatment of primary CD4+, but not CD8+ T cells with anti-CD45 inhibits activation signals induced through the T cell receptor for antigen (TCR alpha beta). Specifically, anti-TCR alpha beta-mediated tyrosine phosphorylation of phospholipase C-gamma 1 is inhibited, and this in turn correlates with the inhibition of subsequent Ca2+ mobilization and DNA synthesis. In marked contrast, none of these activation parameters are affected by anti-CD45 in CD8+ T cells. Perturbation of TCR alpha beta signalling in CD4+ cells is observed in conditions which do not detectably affect the level of CD45 expression, or its membrane distribution. Further, changes in the intrinsic phosphatase activity of CD45 are not detectable. While anti-CD45 ablates TCR alpha beta signalling, anti-CD3 epsilon-mediated activation is unaffected. This suggests that elements of the antigen receptor complex can be functionally uncoupled, and indicates that the requirements for CD45 in signalling through these two elements are different. The results demonstrate that the involvement of CD45 in coupling TCR alpha beta to second messenger-generating pathways is under distinct physical and/or functional constraints in primary CD4+ and CD8+ T cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.