Abstract

To date, little is known about the diazotrophs in freshwater ecosystems. In this study, we examined the diversity, abundance, and distribution of the diazotrophic community in the deep oligotrophic Lake Fuxian using high-throughput sequencing and quantitative polymerase chain reaction of nifH genes. Our results showed that the diazotrophs in Lake Fuxian were diverse and were distributed among Proteobacteria, Planctomycetes, Cyanobacteria, Verrucomicrobia, Bacteroidetes, Chloroflexi, and other unclassified environmental sequences. For the first time, it is found that Bacteroidetes and Planctomycetes harbor diazotrophs in freshwater ecosystems. The diazotrophic community compositions were significantly different between the littoral and pelagic zones in the surface layer, and they also changed dramatically along the vertical profile. High diazotrophic abundance and diversity were mostly observed in the surface littoral zone, and overall, a significant relationship between nifH gene richness and abundance was observed. The water turbidity, nitrite, and phosphorus were the most important factors explaining the spatial changes in diversity and abundances of this important functional group. The two most dominant operational taxonomic units belonging to Betaroproteobacteria and Planctomycetes demonstrated opposite distribution patterns in abundance that were driven by non-overlapping environmental factors. This study is by far the first to uncover the high diversity and intra-lake heterogeneity of diazotrophs in a freshwater lake and illuminate the controlling factors. It provides the probability of the co-occurrence of N2 fixation and N-loss in particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.