Abstract

Surround inhibition (SI) is a feature of motor control in which activation of task-related muscles is associated with inhibition of neighboring, nonprotagonist muscles, allowing selective motor control. The physiological basis for SI still remains unknown. In all previous studies, SI in the motor system was measured during movement initiation by using transcranial magnetic stimulation (TMS) to deliver a posteroanterior current at a single suprathreshold intensity. To expand our understanding of SI, we explored this phenomenon at a wide range of intensities and by stimulating motor cortex with currents along anteroposterior and lateromedial directions. Fifteen healthy volunteers performed a brief isometric index finger flexion on hearing a tone. Electromyography was recorded from the synergist and surround finger muscles. Single-pulse TMS was applied to stimulate the surround muscle at different intensities at rest or movement initiation. The motor evoked potential (MEP) amplitudes were then plotted against stimulation intensities to obtain the MEP recruitment curves for the rest and movement initiation conditions and for the three current directions for every subject. From the recruitment curves, we found that surround inhibition could be elicited only by the posteroanterior current. Hence, we postulate that surround inhibition is mediated by intracortical circuits in the motor cortex. Also, for the first time, we observed surround facilitation when the motor cortex was stimulated with anteroposterior current. Further studies are needed to investigate the mechanisms underlying both these phenomena individually in healthy subjects and patients with dystonia and other movement disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call