Abstract

The environmental fate and risks of mononitrophenols (mono-NPs), the simplest nitrophenols (NPs) often found in aquatic environments, are profoundly influenced by anaerobic bioreduction and co-existing electron shuttles (ESs), but little is known about the underlying mechanisms. Here, we elucidate the pathways of anaerobic mono-NPs bioreduction by Shewanella oneidensis MR-1 and assess the effect of model ESs on these processes. We found that all three mono-NPs isomers could be readily reduced to their corresponding aminophenols by S. oneidensis MR-1 under anaerobic conditions. CymA, a core component of the Mtr respiratory pathway, performs a dynamic role in these bioreduction, which is highly dependent on the bioreduction kinetics. The exogenous addition of quinones was found to accelerate the mono-NPs bioreduction through interactions with key outer-membrane proteins (e.g., OmcA and MtrC), and all these processes matched well to linear free energy relationships (LFERs). Surprisingly, adding riboflavin did not influence the bioreduction of all three mono-NPs isomers, which may be due to the contribution of OmcA and MtrC to these bioreduction processes and their downregulated expression. This study enhances our understanding of the environmental fate of mono-NPs and their bioconversion processes, providing valuable insights for the bioremediation of nitrophenol-contaminated sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.