Abstract

Rhipicephalus (Boophilus) microplus ticks cause major constraints to public and livestock health, and serious economic losses. It is well known that the immune response to infestations with cattle ticks is influenced by the host genetic background leading to distinct immunological profiles between bovine hosts genetically susceptible and resistant. The influence of Bos indicus (Bi) and Bos taurus (Bt) maternal lineage ancestry of mitochondrial DNA in the profile of the immune response of Zebu cattle to ticks remains unknown. The present work evaluated the hematological parameters and the immune response profile in the peripheral blood of a Guzerat dairy herd, further categorized into two maternal lineage ancestry subgroups (Bi-mtDNA and Bt-mtDNA) after experimental infestation with larvae of R. microplus. Our data demonstrated that although hematological and erythrogram analysis showed a similar profile throughout, some cell populations present a distinct profile between the groups. Especially MON, CD335+ and CD8+ T-cells are predominant in Bi-mtDNA. Moreover, an overall picture of R. microplus infestation demonstrated that Bi-mtDNA presented a more efficient and earlier innate immune response. Bi-mtDNA showed a greater number of connections with R. microplus counts and also with the CD25+ activation marker of the immune response. Bi-mtDNA showed greater number of connections, with an important participation of the innate immune while Bt-mtDNA showed a delay in the immune response. Elucidating the mechanisms by which resistant animals prevent heavy tick infestation is a crucial step in the development of predictive biomarkers for tick resistance for use in selective breeding programs, and is also potentially useful for the development of anti-tick vaccines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call