Abstract

To evaluate roles of nitric oxide (NO) in neural functions, it is critical to know how neural inputs activate neuronal NO synthase in individual sites. Although NMDA receptor-dependent mechanism well explains postsynaptic, robust NO production, this sole mechanism does not explain some aspects of NO production in the brain, such as the low-level production of NO and the mechanism for presynaptic NO production. We hypothesized that the glutamate receptor involved in NO production is site-specific and controls the initial NO concentration in each site. We visualized NO production mediated by NMDA, AMPA and type-1 metabotropic glutamate (mGlu-1) receptors in rat cerebellar slices and granule cells in culture, with an NO-specific fluorescent indicator, diaminofluorescein-2. AMPA receptor, but not NMDA or mGlu-1 receptor, was responsible for NO production at parallel fiber terminals, which was blocked by CNQX, tetrodotoxin or voltage-dependent calcium channel blockers. More numbers of electrical stimulation were required for NO production in the molecular layer than in other layers, suggesting that AMPA receptor activation generates NO at lower concentrations through a remote interaction with NO synthase. Although Purkinje cell does not express NO synthase, we detected NO production in Purkinje cell layer following electrical stimulation in the white matter at 50 Hz, but not at 10 Hz. This NO production was tetrodotoxin-sensitive, suggesting occurrence in the basket cell terminals, and required synergistic activation of mGlu-1 and NMDA receptors. In the granule cell layer, activation of AMPA or mGlu-1 receptor produced NO uniformly, while NMDA receptor activation produced NO in discontinuous areas of this layer. Thus, distinct glutamate receptors, including non-NMDA receptors, govern occurrence and level of NO production in a layer-specific manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call