Abstract

Epigenetic mechanisms may affect the ideal and non-ideal kidneys selected for transplantationand their inflammatory gene expression profile differently and may contribute to poor clinical outcomes. Study the Global DNA methylation and the expression profiles of the DNA methyltransferases (DNMTs) and nuclear factor kappa B (NF-κB) in preimplantation kidney biopsies from ideal and non-ideal kidneys (expanded criteria donor (ECD) and with KDPI > 85%). In a sample consistingof45 consecutive pre-implantation biopsies,global DNA methylation levels were detected by LINE-1 repeated elements using bisulfite pyrosequencing. DNMT gene expression was assessed by real-time quantitative polymerase chain reaction, and NF-κB protein expression by immunofluorescence. ECD kidneys displayed increased methylation levels in LINE-1, and DNMT1 and DNMT3B expression was upregulated when comparing ECD to standard criteria donor kidneys. Similarly, kidneys with KDPI > 85% exhibited increased LINE-1 methylation and DNMT1 upregulation when compared to a KDPI ≤ 85%. NF-κB protein expression levels were greatly increased in both types of non-ideal kidneys compared to ideal kidneys. Moreover, hypermethylation of LINE-1 was associated with cold ischemia time > 20h and ECD kidney classification. This study shows that global DNA hypermethylation and high expression of NF-κB occurred in both types of non-ideal kidneys and were associated with prolonged cold ischemia time. Global DNA methylation can be a useful tool to assess non-ideal kidneys and hence, could be used to expand the pool of kidneys donors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call